Singapore : world scientific , 1994 . 4 li h , wu y . automated theorem proving in projective geometry with cayley and bracket algebras 其中特征列方法是定理機(jī)器證明與方程求解的基礎(chǔ),也是數(shù)學(xué)機(jī)械化領(lǐng)域目前研究的核心內(nèi)容。
1 wu w t . on the decision problem and the mechanization of theorem - proving in elementary geometry . scientia sinica , 1978 , : 159 - 172 . re - published in em automated theorem proving : after 25 years , 1984 , pp . 213 - 234 本文第一作者于上世紀(jì)七十年代末開(kāi)始從事數(shù)學(xué)機(jī)械化研究,致力于實(shí)現(xiàn)推理與方程求解的自動(dòng)化,并創(chuàng)立了幾何定理機(jī)器證明的吳方法與方程求解的特征列方法。
In proposbonal calculus , the processing ofresoluhon pdriciple have combination explosion naturally so , how to eltw combinaion explosion in the processing of resolution ( genetal showed computationaily hard problem ) is an in1portan subject in automated theorem proving 命題邏輯系統(tǒng)中的歸結(jié)原理本質(zhì)上存在組合問(wèn)題,因此,如何避免組合問(wèn)題(通常以計(jì)算復(fù)雜性的形式出現(xiàn))是自動(dòng)推理研究中的一個(gè)重要課題。
In this paper , it s applications were explained from seven different fields , the common zeros of two polynomials , the multiplicities of roots and the discrimination of a polynomial , searching the equations suitable for a algebraic number , implicating a rational curve over the plane , computing the zeros of a nonlinear algebraic equation and gathering the discrimination surface of the sas in automated theorem proving on inequalities 本文從7個(gè)方面闡述了結(jié)式的應(yīng)用,包括判斷2個(gè)多項(xiàng)式的公共零點(diǎn),判定多項(xiàng)式是否有重根,計(jì)算多項(xiàng)式的判別式,尋找代數(shù)數(shù)滿足的方程,平面有理曲線的隱式化,非線性代數(shù)方程組求解和不等式機(jī)器證明中半代數(shù)系統(tǒng)邊界曲面的獲得等。
Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major impetus for the development of computer science.